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l/d-expansions for the free energy of lattice animal models of 
a self-interacting branched polymer 

P J Peard and D S Gaunt 
Depamnent of Physics, King’s College, Strand, London WC2R ZLS, UK 

Received 10 July 1995 

Abstract W e  model a self-interacting branched polymer by a nearest-neighbour contact model 
of lattice animals with either site or bond counting (k- and K-models, respectively). l/d- 
expansions for the reduced limiting free energy are derived though order 1/d5 in which 
the coefficients are temperature dependent. By evaluating the coefficients at d a i n  special 
temperahlres, we obtain l/dexpansious for the growth constants of various types of lattice 
animal. again through order l / d 5 .  The l/d-expansions are used ,to obtain numerical estimates 
of the gmwth constants and to study the temperahue dependence of the reduced limiting free 
enegis on ddimensional simple hypercubic lattices for values of d up to the upper critical 
dimension. The results are compared with ones obtained by more conventional series methods. 
Unexpected results me obtained for a range of values of the temperalure variable. 

1. Introduction 

Linear polymer molecules in dilute solution are expanded objects under good solvent 
conditions and may be modelled as a self-avoiding wak (SAW) on a lattice. If the solvent 
quality decreases, the linear polymer can collapse from a random coil to a globule and this 
phenomenon has been investigated experimentally (Slagowski e t d  1976, Sun etal 1980, 
1990). A convenient model for this system is a SAW with an energy tetm proportional to 
the number of nearest-neighbour contacts, i.e. pairs of vertices of the walk which are one 
lattice space apart but not connected by an edge of the walk. Many authors have used this 
model since its introduction by Orr (1946). 

A similar collapse phenomenon is expected to occur in randomly branched polymers in 
dilute solution (as the solvent quality decreases) although this does not seem to have been 
studied experimentally, However, the collapse has been studied theoretically by various 
authors using lattice animals (connected subgraphs or section graphs of the lattice), lattice 
trees (animals with no cycles) and c-animals (animals with precisely c cycles). Different 
models have been suggested with the collapse being driven by a cycle fugacity (Derrida 
and Hemnann 1983, Dickman and Shieve 1984, 1986, Lam 1987, 1988, Chang and Shapir 
1988, Gaunt and Flesia 1990, Madras et al 1990, Vanderzande 1993), a contact fugacity 
(Gaunt and Flesia 1990, 1991, Madras et al 1990, Gaunt 1991, Flesia and Gaunt 1992, 
Flesia~etal 1992a), a solvent fugacity (Flesia et al 1992a. 1993, 1994, Flesia 1993) or by 
a combination of two such fugacities (Flesia et a1 1992b, 1994). The techniques used to 
study this collapse include transfer matrix methods on two-dimensional strips (Demda and 
Herrman 1983), Monte Carlo methods (Dickman and Shieve 1984,.Lam 1987, 1988) and 
exact enumeration methods (Chang and Shapir 1988, Gaunt and Flesia 1990, 1991, Madras 
et al 1990, Gaunt 1991, Flesia and Gaunt 1992, Flesia et al 1992a, b, 1994). 
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Madras et a1 (1990) used series analysis and exact enumeration data for lattice animals 
on the square and simple cubic lattices to investigate the reduced limiting free energy of two 
different representations of the cycle model and compared these numerical results with some 
rigorous bounds. Similar work has been presented for contact models (Gaunt and Flesia 
1990, Madras et al 1990, Gaunt 1991, Flesia and Gaunt 1992) and for the solvent model 
(Flesia 1993, Flesia etal 1994). New exact enumeration data, analogous to that presented 
in the appendices of Madras et al (1990). are now available for simple hypercubic lattices 
in dimensions d = 4-8, inclusive. These data allow us to derive and study the reduced 
limiting free energy of lattice animal models on a simple hypercubic lattice using a l/d- 
expansion and to estimate numerically the growth constants for lattice animals in higher 
dimensions. 

Expansions in l/d were 6rst introduced by Fisher and Gaunt (1964) and used by them 
to study (amongst other things) the SAW model of a dilute solution of linear polymers. 
They derived an expansion for p, the SAW limit, through order l/dS and used it to obtain 
numerical estimates of p in dimensions d = 2 4 ,  inclusive. The validity of such an 
expansion was demonstrated rigorously by Kesten (1964) for sufficiently large d. The 
corresponding expansion for NAWS or neighbour-avoiding walks has been given by Gaunt 
er al (1984) through order l/d3. An expansion through order l/d5 for the amplitude A in 
the asymptotic form 

c, - AnY-‘ P n + c o  (1.1) 

for the number, c,,, of n-step SAWS was given by Gaunt (1986). 
More recently, Nemirovsky er nl (1992, b) and Ishinabe et ul (1994) have studied an 

interacting SAW with nearest-neighbour contact energy --E, by deriving expansions through 
order l/d5 for the reduced limiting free energy, logp, and several other thermodynamic 
and shuctural quantities. The coefficients of these l/d-expansions are now temperature 
dependent functions of z = efjk7. The known results for SAWS (Fisher and Gaunt 1964, 
Gaunt 1986) may be recovered by setting z = 1, while setting z = b  extends the known 
results for NAWs (Gaunt er a1 1984) through order l/d5. 

The application of l/d-expansions to lattice animals was first made by Gaunt et al 
(1976). They derived an expansion for log& through order l/d*, where As is the growth 
constant of skongly embeddable (i.e. section graphs of the lattice) animals with site counting. 
The analogous expansion through order l/d2 for loghb, where hb is the growth constant 
of weakly embeddable (i.e. subgraphs of the lattice) animals with bond counting, was 
derived by Gaunt and Ruskin (1978). An error in the coefficient of 1/d2 was corrected by 
Harris (1982), who also extended the expansion through order l/d5. Recently, Gaunt et a1 
(1994) extended the expansion for log As by one more term and derived the expansions for 
log& (i.e. weakly embedded animals with site counting) and log Ab (i.e. strongly embedded 
animals with bond counting) through the same order (i.e. through order l/d3). 

Expansions for c-animals, both weakly and strongly embedded, have been given for the 
case c = 0 (i.e. lattice trees) through order l/d3 (Gaunt et nl 1982, 1994), and through 
lower order when c = 1 and 2 (Whittington er a1 1983). 

The aim of the present paper is to do, for the more difficult problem of interacting 
lattice animals, what Nemirovsky et al (1992b) did for interacting SAWS. We concentrate 
on the contact model of branched polymers and derive, for the first time, an expansion 
for the reduced limiting free energy through order 1/d5. The free energies at particular 
temperatures are related to the growth constants of different types of lattice animal, which 
we therefore obtain through the same order. 
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A model of branched polymers in which the collapse is driven by a nearest-neighbour 
contact interaction is the obvious generalization of the interacting SAW model of linear 
polymers. However, the techniques developed here can be applied to many other models 
including the cycle and solvent models. 

In section 2, we outline the derivation of the lld-expansions and present the main 
results. In section 3, we compare the expansions for Iattice animal growth constants with 
known results and for the free energy with rigorously known bounds (Madras et al 1990) 
and discuss the limitations of the l/d-expansion for these problems. In section 4, we 
summarize our results and discuss further work. 

2. l/a-expansions 

In contact models, an interaction energy is introduced between contacts, i.e. pairs of occupied 
nearest-neighbour sites of the lattice, which are not directly joined by a bond of the lattice 
animal. This gives each animal a weight eflk, where ,9 is proportional to the inverse 
temperature and k is the number of contacts in the animal: d is a contact fugacity. The 
animals are weakly embedded in the lattice, since the case of strong embeddings is trivial for 
a contact model (i.e. k = 0 by definition). Finally, the size of the animal can be measured 
either by the number (n) of sites it contains or the number (b )  of bonds. This gives two 
different contact models; one with site counting (k-model) and one with bond counting 
(k'-model). 

The partition function for the k-model is defined as 

where z = & is the contact fugacity and a,(k) is the number (per lattice site) of weakly 
embedded lattice animals with n sites and k nearest-neighbour contacts on a d-dimensional 
simple hypercubic lattice. The~coordination number q(= U + 1) of the lattice is given by 

q = 2d = U + 1. (2.2) 

The function 2, is easily evaluated by direct counting for very small animals with 
n = 1 , 2 , 3 , .  . . sites. Clearly, 

2, = 1 

and 

since the only animal with two sites is a single bond of which there are q/2 per lattice site. 
Alternatively, the result (2.4) may be thought of as follows: a single bond may only span 

a single dimension and (:) is the number of ways of choosing one dimension from d 

dimensions. A three-site animal has two bonds that can be either collinear or perpendicular. 

The linear animal occupies a single dimension and contributes ( y )  to 2 3 .  When the bonds 
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are perpendicular, there are four distinguishable (i.e. cannot be superimposed by translation) 
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animals each spanning a two-dimensional subspace of which there are 

2 3  = (t') + 4  (;) (2.5) 

A temperature dependent term first appears in Z4 and is due to the four distinguishable 
animals formed by deleting one side of a square leaving one nearest-neighbour contact. 

These four animals span one of the (:) two-dimensional subspaces, as do another 17 

distinguishable animals with no contacts. This latter group includes 12 three-bond chains, 
four uniform threestars with one bond per arm and one square. In addition, there are 32 
animals, all with no contacts, which reach into a threedimensional subspace; of these, 24 
are chains and the other eight are uniform three-stars. Finally, the linear four-site animal 

contcibutes a term , as before. Hence,we find 

Z4 = (f ) + (17 + 42) (:) + 32 (:) 
For larger values of n, Z ,  have been derived using computer enumeration and are given 

in appendix 1 through n = 8. Although incomplete expressions have been derived for larger 
values of n, it should be emphasized that the expressions in appendix 1 hold for arbitrary 

d. Clearly, the first term is always , since when d = 1 there is only one animal. At 

) , since those n-site clusters the other end, 2, terminates with the term involving 

which occupy the greatest subspace will have no cycles and are therefore trees with each 
of their (n - 1)  bonds in a different dimension. All these clusters will have zero contacts. 
The general form can therefore be written as 

( 
(3 

where 

It should be noted that the terms in (2.7) appear in the reverse order to those in appendix 1. 
The next step is to determine the n-dependence of the coefficients &$'. From appendix 1, 

we see that the sequence of coefficients (fg] is {1,4,32,400,6912,153 664,4 194309, 
. . . ; n > 21 and is generated by the function 

fi.o(n) = 2n-1nn-3. (2.9) 

This function counts trees with n sites that span n - 1 dimensions (Gaunt et al 1982, 
equation (4.6), and Gaunt et a1 1976, equation (2.4)) and since all these clusters have zero 
contacts, it is clear that 

f i , k ( n )  = 0 Vk , 0 (2.10) 
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(1,17,348,8640,254 800.8 749056, Similarly, we assume that the sequence f&’} 
. . . ; n > 3) is generated by the function 

(2.1 1) “-3 n-5 fz,o(n) = 2 n (n - 2)(2n2 - 6n f 9 )  

while the sequence = IO, 4,96,2304,62720,19 066080, . . . ; n > 3) is generated by 

“-3 “-5 (2.12) fil(n) = 2 n 4(n - 2)(n - 3). 

In addition, 

fZ.k(n) = 0 Vk z 1. (2.13) 

fi.o(n) is, as expected, the coefficient of ( rf 2) in the corresponding expansion for 

all strongly emheddable (i.e. zero contacts) animals with site counting (Gaunt et a1 1976, 
equation (2.4)). A check on all the functions is provided by summing over k giving 

(2.14) 

As expected, this is the coefficient of ( f i) in the expansion for all weakly embeddable 

animals with site counting and without regard to contacts (Gaunt et a1 1994, equation (3.2)). 
The &(?I) derived above can be written as 

(2.15) 

where gi,a(n) is a polynomial in n .  We assume this form to be generally valid. We have 
derived all for i = 1-6 and the non-zero ones are presented in appendix 2. Fori = 1 
and 2, they foIlow from (2.9), (2.11) and (2.12). For larger values of i, they have been 
derived using exact enumeration data and the fact that their coefficients axe constrained by 
the existence of a lju-expansion for the reduced limiting free energy (see later). 

We now rewrite the partition function (2.7) of an animal with a fixed number (n) of 
sites, as a function of n. Thus, 

(n) & 2”-2icl n-2i-1 
IC n gi,x(n) 

Following Gaunt et al (1976), the binomial coefficients may be expanded in inverse powers 
of U using 

(f ) = (o’/Z”s!)[l -s(s - 2)a-I + gs(s - 1)(3s2 - 13s + ll)u-’ 

- gscs - l)(s - 2)2(s2 - 5s + 3 ) 6 3  

+ &s(s - l)(s - 2)(s.- 3)(15s4 - 150s3 + 455s’ - 468s + 1 2 7 ) ~ - ~  

- & j ~ ( s  - I)(s - 2)’(~ -3)(s -4)(3s4 - 3 4 ~ ~  f 107s2-84~ + 15)~-’+. . .I. 
(2.17) 
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Then formally taking the logarithm of Z(n,  z ;  k), dividing by n and letting n -+ 00, we get 
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1 
n-tm n F(z;  k) = lim - log Z(n, z; k) (2.18) 

(2.19) = logu + 1 + rim CEhi , j (n)z ju ' . .  
"-%a 

i>,I j>o 

The reduced limiting free energy, 'F, is an intensive quantity, so the assumed existence of 
this expansion to all orders in l/u implies that the h;.j(n) are constants (in fact, rational 
numbers) in the limit n - x o .  This in turn implies that the gj,k(n), which determine the 
hi&), are constrained, as was mentioned earlier. Explicitly, we find 

9 2 -2 F(z;  k) = logu + 1 + (-2 + 2z)u-' + (-$ - fZ + z z  )U 

+ (-3'7 + SZ - L p  + y z 3 ) u - 3  

+ (-U - %,.+ X?l22 - B Z 3  + -hz 1225 4 + 6 4 z 5 ) u  -4 

f w z 5  + 75226)u-5 + o(u-6) .  

24 12 

320 12 4 6 
+ (-- + -Z - 1418z2+ 41433 TZ 3 - TZ 128329 4 

(2.20) 

On setting z = 1 in (2.1), we see that Z,, is the total number of weakly embedded lattice 
animals with n sites (i.e. without regard to the number of contacts). Hence, F ,  as defined 
by (2.18) will be the logarithm of the corresponding growth constant, namely logh,. Thus, 
setting z = 1 in (2.20) gives 

(2.21) 55 -2 -a -3 I, 39683J-4- - log& = logu + 1 - g u  24u 960 44303u-5 240 + o(u-6). 

Similarly, setting z = 0 in (2.20) gives 

log A, = logg + 1 - 20-1 - - %,3-3 - 18321~-~ - 123307~-~ 240 + o(u-6) (2.22) 320 

where A, is the growth constant for strongly embedded lattice animals with site 
counting. These expansions agree through order u - ~  with the results of Gaunt et a1 (1994) 
but the remaining coefficients are~new. 

The k'model is treated in a similar manner but with one important difference. For 
bond counting, the analogues of the generating functions fi.k(n) are more complicated. In 
particular, one gets different functions for bond animals containing different numbers of 
cycles. (This effect was first noted by Gaunt and Ruskin (1978). equation (2.4) and ensuing 
discussion.) It is convenient, therefore, to introduce a two-variable model with contact 
fugacity z and cycle fugacity y .  The analogue of (2.7) is 

(2.23) 

where the are the numbers of lattice animals with b bonds, k contacts and c cycles 
that are weakly embeddable in a (b - i)-dimensional subspace (i = 0, 1,2, . . . , b - 1). The 
numbers have been determined by computer enumeration and are generated by the 
functions 

(2.24) fi,k,c(b) = 2b-z+C(b + 1 - ,.)b-Z(i+l)+c gi,k,c(b) 
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where the non-zero g<,k,Jb) are polynomials in b  and^ are given in appendix 3 for i = iL.5. 
The partition function in (2.23) may now be written, in analogy with (2.16), as a 

function of b, namely Z(b,  y,  z; c', k'). As before, the binomial coefficients are expanded 
in inverse powers of a. Then one takes the logarithm of Z(b,  y ,  z ;  c', k'), divides by b and 
lets b --f CO. Finally, setting y = 1 and performing the sum over all c gives the reduced 
limiting free energy of the k'-model as 

F(z ;  k') = logo + 1 + (2 +22)o-' +[-(a - z) 1 -5z+ ~z 9 2 IO. -2 

+ [-(? - 271 - &) - (7 499 + &)z 85 + (679 + 5.)~ 37 2 

-- '52'z3 + yz4 + 642 lo 

' +[-(U + &) + (33+ &)z- T Z  135 2 + T Z  130 3 la -3 
12 

4& 

5 - 4  

+E(? + g + 3, +(T 3597 + 8467 + i g ) Z  65 

- (4522 + 9 ) z 2  + (v,+ E ) Z  443 3 - (7 20333 - ,)z 68 4 

+ wz5 + 7 5 2 z 6 J o - 5  + o(o-6); (2.25) 

Now when we set z = 1, we obtain 

= logo + 1 - 4o-I - ($ -$)U-* - (85 - L)g-3 - (93' - '39 - I 
12 4c 20 48s Z w 4  

- (T + g - &)o-5  + o(o-6) (2.26) 

where hb is the growth constant for weakly embedded lattice animals with bond counting. 
Setting z = 0 gives the corresponding result for strongly embedded animals with bond 
counting, namely 

logAb = logo + 1 - - (U - - (m + L) -3 - ('39 - zz! - 
6 2r 12 4c l7 5 48e Be' 

-(~++++).-5+O(o-6), (2.27) 

The expansion for log& agrees through order u - ~  with that given by Harris (1982), 
while that for log126 agrees through order u - ~  with the result of Gaunt et a1 (1994), the 
last two coefficients being new. 

Equations (2.20) and (2.25) are the central results of this paper. They are the analogues, 
for the k- and k'models of a self-interacting branched polymer, of Nemirovsky et a1 
(1992b), equation (19), for the contact model of a self-interacting linear polymer. 

3. Growth constants and the free energy 

The l/o-expansions for the growth constants and for the reduced limiting free energies 
are expected to be asymptotic rather than convergent (Kesten 1964, Gerber and Fisher 
1974, Fisher and Singh 1990, Hara and Slade 1995). In a given dimension, numerical 
estimates ~of~the four growth constants may be obtained by truncation after the term of least 
modulus. Table 1 compares estimates of the logarithm of the growth constants obtained 
from l/o-expansions (indicated by the superscript U), with series estimates (indicated by 
the superscript s) (Gaunt 1980, Flesia and Gaunt 1992, P J Peard, unpublished), for d = 2 
through d = 8 (the upper critical dimension). The errors quoted on the estimates from 
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the I/u-expansions are the magnitudes of the term of least modulus (Gaunt and Ruskin 
1978). When the uncertainties are taken into account, the agreement between the series and 
I/u-estimates improves monotonically as d increases. In all cases, the pairs of estimates 
overlap and the Ilu-estimates appear to be the more accurate when d > 6. Surprisingly, 
the two estimates of Iogib overlap for all d = 2-8. It is interesting that, on taking the 
uncertainties into account, the l/u-expansion overestimates logis for all d, but tends to 
underestimate in all the other cases. 

As pointed out by Gaunt et al (1994), the coefficients in the l/u-expansions (2.21). 
(2.22). (2.26) and (2.27) for the logarithm of the growth constants, suggest the ordering 

P I Peard und D S Gaunt 

As > Ab > As > Ab (3.1) 

for any dimension d. Both sets of numerical estimates in table 1 conform to (3.1) for all 
d = 2-8. In fact, all except the last of the inequalities in (3.1) have been proven rigorously 
wit t ington and Soteros 1990, Gaunt i t  al 1994). 

Finally, we may use the I/u-expansions (2.20) and (2.25). to study the temperature 
dependence of the reduced limiting free energies of the k- and k‘models in a given 
dimension. This is done by evaluating the temperature-dependent ccefficients at a given 
temperature (or e), substituting the appropriate value of U(= 2d - 1) and truncating the 
expansion after the term of least modulus. As before, the uncertainties are taken to be of 
the order of the term of least modulus. The process is then repeated for different values of 
z and/or U .  

The I/u-estimates obtained as above may be compared with more conventional series 
estimates and with some rigorous upper and lower bounds that have been derived (Madras 
et al 1990). Series estimates of’F@: k j  and F(j3; k’) for the square (d = 2) and simple 
cubic (d = 3) lattices have been tabulated for a range of values of j3(= logz) by Flesia 
and Gaunt (1992), table 1. They are plotted for the k’-model by Flesia and Gaunt (1992), 
figures 1 and 2, and for the k-model by Madras et al (1990). figure 3, for d = 2 and by 
Gaunt (1991). figure 1, ford = 3. 

In figure 1, we give as an example l/u-estimates and series estimates of F(@; k )  plotted 
against j3 on the simple cubic lattice, together with the rigorous bounds. The curve derived 
by more conventional series methods is expected to be essentially exact over most of the 
range plotted. For values of j3 z 1, series methods fail to provide reliable estimates of F 
but, in any case, the collapse transition is believed to occur around @ = Bc N 0.3 (Flesia 
and Gaunt 1992). The abrupt &.anges in the I/u-plot occur at temperatures where there is a 
change in the order of the term at which truncation of the l/u-expansion occurs. The ]/U- 

plot is not too bad, especially when one remembers that it is derived from an asymptotic 
l/d-expansion by setting d = 3. It is never that far from the plot derived by conventional 
series methods-sometimes below it, other times above it. In some regions, it lies within 
the rigorous bounds, while in other regions, it lies just outside. Essentially comparable 
figures are obtained for the k’-model in d = 3, and for the k- and k’models on the square 
lattice. 

One might expect that asymptotic l/d-expansions would give even better results for 
larger values of d. This does indeed appear to be the case but, for reasom that we do not 
understand, onlyfor ,9 < 0 (or 0 < z < 1). Unfortunately, conventional series estimates of 
F@) are not available for comparison when d > 3, except at the temperatures p = -m 
( z  = 0) and j3 = 0 ( z  = 1)-see table 1. We have seen earlier that ford > 6, l/o-estimates 
of the free energy at these two special temperatures are extremely accurate (more so than 
the conventional series estimates) and this seems likely to be true at all temperatures in 
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4.0 
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3.0 
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2.5 

2.0 

I 
-4 -3 -2 -1 0 1 

0 
F y r e  1. Series (a) and l/a-estimates of the reduced limiting free energy F@) of the k-model 
on the simple cubic lattice, together with their uncertainties. Rigorous upper and lower bounds 
are also shown. 

between (i.e. for all 0 < 0). This conclusion is supported by the following observations: 
the l/u-estimates have very small uncertainties, they lie entirely within the rigorous upper 
and lower bounds (which are quite tight for large d) and they approach the rigorous lower 
bound asymptotically as ,9 + -m, as they must (Madras et a1 1990). 

For 0 z 0 ( z  z 1) and d large, the l/u-esfirnates are apparently very precise (providing 
0 is not too Iarge) and the corresponding l/u-plot is a smooth continuation of the curve for 
,9 < 0. However, except for 0 very small, the plot lies well outside the region delineated by 
the rigorous bounds, which are parallel straight lines with slopes (d - 1). Even worse, the 
discrepancy between the I/u-plot and the rigorous bounds increases as d increases. Hence, 
even when d is large, asymptotic l/d-expansions appear not to be valid for 0 z 0, except 
possibly for very small ,9. 

4. Discussion 

In this paper, we have studied a self-interacting branched polymer with the aid of a nearest- 
neighbour contact model of lattice animals with either site or bond counting (k- and k’- 
models, respectively). Asymptotic expansions in inverse powers of U have been derived 
through order l/u5 for the reduced l i i t ing  free energy. These expansions have been derived 
using the ‘eIementary’ methods that we have used in the past. None of the interesting 
theoretical developments discussed by Harris (1982). Nemirovsb et al (1992b) and Hara 
and Slade (1995) are actually needed for the practical problem of series derivation through 
order l/d5. Evaluating the temperaturedependent coefficients at the special temperatures 
,9 = -CO (z = 0) and ,9 = 0 (z = 1) gives l/u-expansions, through the same order, for 
the logarithm of the growth constants As and Ab, and As and Ab, respectively. For Ab, the 
expansion (2.26) agrees with that derived by Harris (1982) while for A,, A, and Ab, our 
results (2.21), (2.22) and (2.27) extend the previously known results (Gaunt et a1 1994) by 
two terms. The l/u-expansions (2.20) and (2.25) for the reduced limiting free energy are 
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entirely new, and are the analogues of Nemirovsky et nl (1992b), equation (19), for the 
contact model of a self-interacting linear polymer. (There is no need to distinguish between 
site and bond counting for linear polymers.) 

We have used the l/u-expansions to estimate the growth constants and the reduced 
limiting free energies for all d upto d = 8, the upper critical dimension. The I/o-estimates 
have been compared with estimates obtained by more conventional series methods and, in 
the case of the free energies, with rigorously derived bounds. For p < 0, the I/o-estimates 
get more accurate as d increases. In particular, by d = 6, the l/u-estimates of the growth 
coastants (or, equivalently, the reduced limiting free energies at p = -CO and ,3 = 0) 
overlap with the series estimates in all cases and, furthermore, the I/o-estimates are the 
more accurate. 

For p > 0, l/u-estimates consistent with the rigorously known bounds on the reduced 
limiting free energy' are only obtained for ,9 small. The range of ,3 over which the I/-- 
plot and the rigorous bounds are consistent shrinks as d increases, and outside this range 
the separation between the l/u-plot and the bounds increases as d increases. Both of these 
findings were contrary to our expectations. One might speculate that the range of validity 
of I/u-expansions is determined by the coIlapse transition at p,(d). On the other hand, it 
may be that the l/u-expansions are not valid for any ,9 z 0. Further work is needed to 
understand the intriguing nature of the I/u-expansions for ,3 > 0. 

In a future publication, our methods will be extended to yield I/o-expansions for the 
growth constants of lattice trees (animals with n o  cycles), and the reduced limiting free 
energy of other lattice animal models of interacting branched polymers (Gaunt and Flesia 
1990, Flesia 1993), including two-variable models (Flesia et a1 1992b. 1994). 

Finally, we have not thus far addressed, in higher dimensions, the existence of the 
collapse transition, nor the possibility of a collapse-collapse transition (Flesia et a1 1992b, 
1994) in a two-variable model. These important questions will also be the subject of a 
future publication. 
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Appendix 1. 

Partition function, Z., of the k-model for all n < 8 on a d-dimensional simple hypercubic 
lattice. 

ZI(Z; k) = 1 
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+ (154741 + 1723682 + 779582’ + 15 308z3 + 408z4 + 384z5) 

(3 + (1688424+ 1313408z+377280zz+40256z3) 

+(6 160640+2961 920z+407040z2) (:)+(8749056+19066 0802) 

+4194309($). 

Appendix 2. 

Polynomials g&z) for all i < 6. (See equation (2.16).) 

gl,o(n) = 1 

gz.o(n) = (n - 2)(9 - 6n + Znz) 

gz.l(n) = 4(n - 
g3,o(n) = i ( n  - 3)(-1560 + 1122n - 679n2 + 360n3 - 104n4 + 12n5) 

g3,l(n) = 2(n -3)(n -4)(45+ Iln: 16nZ+4n3) 

g3,2(n) = 2(n - 3)(n - 4)(n - 5)(21 f4n)  

g4,0(n) = k(n-4)(204960- 114302n+41527n2- 17523n3+7404n4-2930n5+828n6 

- 3) 

- 128n’ + 8 2 )  
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g4.1(11) = $(n - 4)(n - 5)(336 - 98611 - 541n2 - 91n3 + 342n4 - 116n5 + 12n6) 

g 4 , ~ ( n )  = 4(n - 4)(n - 5)(-5376 + 1034n + 526~' - 1 14n3 - 19n4 + 4n5) 

g4,3(n) = $(n - 4)(n - 5)(n - 6)(-2268 + 30n + 3 9 2  + 4n3) 

g5&) = &(n -5)(-3731495040+ 192326904On -535510740n2+ 150403080n3 

-42322743n4+ 12397445n5 -4062240n6 + 1335320n' 
- 356232n' + 622A0n9 - 6000n'0 + 240n") 

gS,l(n) = ~(n-5)(n-6)(1300320-480180n-28423n2+46140n3 -6037n4+2124n5 

- 3908n6 + 1652n' - 272n' + 162) 

gs,z(n) = $(n-5)(n -6)(-4712400+2381074n+350045n2-267582n3 - 14129n4 

+ 15 580n5 + 120n6 - 54%' + 48n8) 

&(a) =~(~-5)(~-6)(n-7)(-901800+188085n+48724n2- 10737n3-720n4 

+ 76n5 + 16n6) 

g5,4(n) = $(?I -5)(n -6)(n -7)(2 398 680-374331n -28 056n2+ 161 ln3+280n4+ 16n5) 

g5,5(n) = 1024(n - 5)(n - 6)(! - 7)n2 ..~ 

&,O(n) = &(n -6)(1785362705280-939451308048n +248868418932n2 

-56265094748n3+ 11984445891n4 -2448081038n5. ~. 

+535 284255n6- 127 651 774n7+33 940 138n8-9580440n9+2398 912n" 
- 440688n" + 51 856n" - 3 4 2 4 ~ ' ~  + 9 6 ~ ' ~ )  

g6.1 (n) = $(n-6)(n-7)(-23 113 537 920+7909 985 232n-651 579924n2+79 125 128n3 

+2066043n4 - 16478588n' +4688465n6 - 1000940n7 
+ 673 856n' - 299032n' + 62720n" - 6240n" + 240nl') 

g6,2(n) = g(n-6)(n -7)(-61205760+90113856n+7880092n2- 19205706n3 

+ 2322958n4 + 963 6402 - 128 379n6 - 42081n' + 4880n8 
+ 1564n9 - 31611" + 16n") 

g6,3(n) = $(n-6)(n -7)(3254929920- 1752427 152n+56884146n2+ 113254335n3 

- 14059494n4-2923902n5+554129n6+10682n7 -31401~' 
- 476n9 + 48n") 

g6,4(n) = $ (n - 6) (n - 7) (n - 8) (866 87 1 720 - 279 374 3 82n - 10 748 979n2 + 10 6 15 978n3 

- 462 859n4 - 8244411' - 378n6 + 368n7 + 3211') 
&5(n) = +(~-6)(n-7)(n-8)(-1188 380 160+308 727756n-8 19452AnZ-1 901 385n3 

- 55350n4 + 9815n5 + 456n6 + 16n') 

g6,6(n) = 512(n - 6 ) ( ~  - 7)(n - 8)(n - 9)n2(135 + 8n) 
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Appendix 3. 

Polynomials gi,xJb) for all i < 5. (See equation (2.24).) 

go,o.o(b) = 1 

gi,o,o(b) = (b - 1)(7 - 3b + 2b’) 

g l , l .o(b)=4(b- l ) (b-2)  

&,o,o(b)= d(b-2)(-237+185b-~115b2+1Z5b3-56b4+ 12b5) 

gz.o.1 (b) 

gz.l.o(b) = 4(b - 2)(b - 3)(44 - 6b - 3b2+ 2b3) 

gz,z.o(b) =2(b -2)(b-3)(6-4)(25+4b) 

g3,O,O(b) = i(b-3)(126212-76155b+ 16024b’-2240b3 +446b4-345b5 

P J Peard and D S Gaunt 

(b - 2)(b - 3) 

+ 254b6 - 76b7 + 8b8) 

g3,0.1(b) = (b - 3)(6 - 4)(50 + 5b -, 9bZ + 2b3) 

g3,1,0(b) = $(b - 3)(b - 4)(15930 - 7243b - 2456’ + 771b3 - 49b4 - 56b5 + 12b6) 

g3.1.1 (b) = 2(b - 3)(b - 4)(b - 5)(9 + 2b) 

g3,Z,O(b) =2(b -3) (b -4)(-16990+5541b+376b’-325b3 -2b4+8bS) 

g3,3,o(b) = $(b - 3)(b - 4)(b - 5)(-2195 + 12Ob + 51b’ 4- 4b3) 

g4,o,o(b) = &(b - 4)(-I739544030 + 863 175477b - 185751 094b’ + 55226901b3 

- 16404778b4+2667.383b5 -235546b6 +41 399b3-50472b8 

+ 22040b’ - 3840b’” + 240b”) 

g4,0,i(b) = i ( b  - 4)(b - 5)(19 152 - 3408b - 2550b2 + 293b3 + 399b4 - 128b5 + 12b6) 

g4.0,Ab) = $(b - 4)(b - 5)(b - 6)(5 + b)  

84.1 .o(b) = $ (b--4)(b-S) (2 076 O48-~127 1 592b+ 129 8 1 Ob2f?4 2 1 5b3- I9 649b4-2245b’ 

+ 1215b6 + &2b7 - 76bs + 8b9) 

84,1,l(b) =2(b -4)(b-5)(-10416+ 1754b+573b2-89b3 -24b4+4bS) 

g4,z,o(b) = f(b-4)(b-5)(-18852936+9863406b - 839975b2-433 169b3+75835b4 

+ 11071b5-2516b6-212b7+48b8) 

g4,2,1(b) =2(b-4)(b-5)(b-6)(-1848-9b+33b2+4b3) 

g4,3,o(b) = !(b -‘4)(b - 5)(6 - 6)(-739567 f 205 8316 + 12 1546’ - 6809b3 

- 131b4 + 82b5 + 8b6) 
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84,4,0(b) = $(b-4)(b-S)(b-6)(b -7)(-285224+20350b+6195bZ+472b3+ 16b4) 

g4,5,0(b) 

gS,O,O(b) =-&(b - 5)(859767624432 - 478442764026b + 117239639733b' 

1024(b - 4)(b - 5)(b - 6)(b + 1)2 

-22.126013137b3 +3761312903b4-610561813b5 

+ 144 141 417b6 - 30677939b7 + 3646965b' - 144 101b9 

+ 116374b'O - 84344b" + 21 120b" - 2320bI3 + 96b14) 

gs,o.i(b) = a(b-5)(b-6)(4402 944- 1 535 520b- 113 032bz+92 370b3+6755b4-4004b5 

- 1947b6 + 966b7 - 148b' + 8b9) 

gS.O.Z(b) = i (b  - 5)(b - 6)(-7536 + 339b + 515b' - 21b3 - 19b4 + 2b5) 

g5,l,O(b) = &(b-5)(b-6)(6 124470480-7849 8865146+2259675 805b2+397569014b3 

- 239 603 363b4 + 6 791 226b5 + 10 861 455b6 - 1 223 814b7 

- 353 857b' + 53 128b9 + 14 840b" - 3840b" + 240b") 

gs.~,l(b) = $(b-5)(b -6)(-13214880+4.439508b+421968b~Z-275323b3 -3930b4 

+ 8123b5 + 450b6 - 316b7 + 24b') 

g5,1,2(b) = $(b - 5)(b - 6)(b - 7)(-1558 - 316 + 18b2 + 3b3) 

gS.Z.O(b) i(b-S)(b -6)(-3 921 287 832+2 648 871 214b -471 107 213b'-69 916 963b3 

+ 31 801 960b4 - 673016b5 -913689b6 + 53705b7 + 19934b' 

- 1340b9 - 328bI0 + 32b") 

g5.2.l(b) = 2(b - 5)(b- 6r(b -7)(-825 120+ 1350606 +27458b2 -4259b3 

- 437b4 + 22b5 -?- 8b6) 

gs.S,o(b) $(b - 5)(b - 6)(9792754944--5 701 715 159b + 895497 136b2+93 886 183b3 

- 37524016b4 + 530 123b5 + 639 104b6 - 22511b' - 5744b' 

- 44b9 + 48b1') 

g5,3,l(b) = $(b-5)(b -6)(b-7)(b -8)(-118935+2118b+2001b2+ 186b3 +8b4) 

g5.4.0(b) 5 $(b -5)(b-6)(b-7)( 1 288 21 8 912-490453 936b+25 861 226b2+9 692 991 b3 

- 846932b4 - 85 81 1b5 + 2574b6 + 608b7 + 326') 

gS,d,I(b) = 1088(b - 5)(b - 6)(b - 7)b2 

gS,S,o(b) = A(b-5)(b-6)(b-7)(-888455 136+289 054 916b- 12970573b'-2 121 755b3 

- 8955b4 + 12 887b5 +568b6 + 16b7) 

&,6,0(b) = 512(b~- 5)(b - 6)(b - 7)(b - 8)(8b + 143)(b + 1)'. 
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